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Abstract

An oscillator circuit-based capacitive method is used to study the ice/water phase

transition in cohesive porous materials like water-filled fused glass beads. It straight-

forwardly gives the temperature domain of supercooling, freezing, and melting. It

also provides an estimation of the ice content time-evolution during the transient

stage of solidification and melting. This is done through calibration tests at 20oC on

a progressively dried sample and through an up-scaling dielectric model. The latter

allows to take account of the temperature and frequency dependence of the water

dielectric constant as well as the slight difference between the dielectric constants

of water vapour (' 1) and ice (' 3.2). From the ice content-versus-time curve, the

water-to-ice phase transition dynamics is found to follow the Avrami law, the expo-

nent of which is close to 0.5. This suggests that the ice/liquid interface is planar so

that the liquid and ice pressures are equal, which is confirmed through the Gibbs-

Thomson and Young-Laplace equations. The resulting pore pressure can then be

predicted in the framework of linear poroelasticity. The analysis reveals a three-step

time-history pressure: an increase at the onset of stable ice nuclei, then a relaxation

induced by unfrozen water Poiseuille-type flow followed by a further rise until the

end of crystallization. In all cases, the pressurization remains very low (0.1 MPa)

at the 0oC-isothermal transient stage of solidification.
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1 Introduction

Most civil engineering or geotechnical durability problems involve water inside

porous media, either in unconsolidated form like soils or in cohesive form like

stones and cementitious materials. In case of freezing and thawing, the in-

pore ice/water phase change behaviour plays a key role (Scherer, 1993; Coussy,

2005; Coussy and Fen-Chong, 2005) through the coupling of the unfrozen water

(or ice) content, the pore pressure, the liquid water flow in the porous network,

and the thermomechanical behaviour of each porous material constituents.

The understanding of such physical phenomena can be improved with the use

of an oscillator circuit-based capacitive apparatus.

Like the time domain reflectometry technique (Zakri and Laurent, 1998), the

dielectric capacitive method exploits the high permittivity disparity between

liquid water and ice, air, or mineral substrate in the radio-frequency range.

It practically relies on the variation of the sample capacitance or dielectric

constant under drying where in-pore liquid/vapour phase change takes place,

and under freezing/thawing where in-pore liquid/ice phase transition occurs.

Its ability to characterize water-filled cohesive porous media like stones or

cementitious materials under freezing and thawing, was laid out in the previous
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papers (Fen-Chong et al., 2004; Fen-Chong and Fabbri, 2005; Fabbri et al.,

2005). In these works, each system was studied after stable thermodynamic

equilibrium had been reached.

This paper deals with the transient stage of freezing during which ice crystals

grow at the expense of adjacent unfrozen water at 0oC. Focus is then laid

on the in-pore ice content time-evolution (at constant temperature) and on

the resulting pressure in the porous network. To do so, the spectroscopic-

like dielectric capacitive method is first recalled (section 2) and applied to

home-made fused glass beads (section 3). Some features of the so-obtained

results are also commented and then expressed in terms of ice saturation

degree (section 4), which allows to identify a possible ice growth mechanism.

In the last section 5, the pressure is calculated within the well-established

poromechanics framework (Coussy, 2004) as in (Coussy and Fen-Chong, 2005;

Coussy, 2005). Note that the temperature and ice content (or liquid content)

are here assumed to be uniform throughout a tested sample.

For the sake of clarity, in all that follows the term ”water” alone refers to

the H2O matter whichever its actual physical state. Conversely the terms

”liquid”, ”vapour”, or ”ice” specify that water is in its liquid, gaseous, or

ice Ih form respectively, while the terms ”solid” and ”matrix” refer to the

backbone constituent of the porous material. At last, the temperature T is

always in Kelvin degree when appearing in mathematical expressions while it

can be numerically expressed in Celsius degree for engineering conveniency.
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2 Dielectric capacitive method

2.1 Basic measurement principle

The local spatial redistribution of polarised electrical charges in a material

sample under an applied electric field is characterised by its dielectric constant

(dielectric permittivity relative to that of free space) ε∗ = ε − j εr, where

j2 = −1. The real part ε relates to the behaviour of an ideal insulator and

characterises the degree of electric polarisability of the material while the

imaginary component εr is associated with the electric energy dissipation into

heat due to electrical conduction and polarised charges fluctuations.

A capacitive sensor-based apparatus can provide the real part ε via the medium

electric capacitance C because:

C = εC0 (1)

in which C0 is the air electric capacitance for the same geometrical configu-

ration. The capacitive method is well-suited for studying dielectric medium

filled with water undergoing phase transition owing to the associated high

variation of the water dielectric constant. Since the host medium permittiv-

ity ε depends on each constituent permittivity and volume fraction, ε evolves

with the content variation of liquid water, as experimentally found or reported

in (Eller and Denoth, 1996; Fen-Chong et al., 2004; Fabbri et al., 2005). As

regards the liquid/vapour phase change which occurs under drying condition,

the water dielectric constant falls from 80.2 (liquid) down to 1 (vapour) (Lide,

2001). The situation is essentially the same for the liquid/ice phase transition

that occurs under freezing and thawing condition, as detailed below.
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2.2 Temperature and frequency dependence of water permittivity

The water dielectric behaviour is well described by the single relaxation time-

based Debye model (Auty and Cole, 1952; Johari and Whalley, 1981; Ellison

et al., 1996; Kaatze, 1997; Petrenko and Whitworth, 1999). This means that

the real dielectric constant εq of ice (q = i) and liquid water (q = `) is given

by:

εq(ν, T ) = ε∞q (T ) +
εs

q(T )− ε∞q (T )

1 +
(
2 π ν τq(T )

)2 (2)

where ν is the electric field frequency (in Hz), T the temperature (in K),

εs
q(T ) = εq(ν → 0, T ) and ε∞q (T ) = εq(ν →∞, T ) are respectively the limiting

low-frequency (static) and the limiting high-frequency real dielectric constants

of each phase q. In the radio-frequency range, the experimental values of εs
q

and ε∞q are: ε∞i ' 3.2 from 253 K to 272 K (Evans, 1965; Johari and Whal-

ley, 1981; Petrenko and Whitworth, 1999), εs
i (T ) ' ε∞i + 24620

T−6.2
from 133 K

to 272 K (Johari and Whalley, 1981), ε∞` ' 5.7 in average between 273 K

and 298 K (Kaatze, 1997), εs
`(T ) ' 87.8e−0.0046(T−273.15) (Ellison et al., 1996;

Kaatze, 1997) from 373 K down to 238 K (Ellison et al., 1996). In (2), τq is

the relaxation time of the electric dipole moments of water molecules in the

q-form. It is given by:

τq = τ 0
q e

−∆Hq
R T (3)

where ∆Hq is the activation enthalpy corresponding to one hydrogen bond, τ 0
q

is a time constant and R = 8.3147 J/(K.mol) is the ideal gas constant. From

experimental literature data ((Auty and Cole, 1952) for ice and (Kaatze, 1997)

for liquid water) we find the following fitted values ∆Hi ' 54525 J/mol, τ 0
i '

8.39−16 s, ∆H` ' 19775 J/mol and τ 0
` ' 2.87−15 s. It must be stressed out that

we have extrapolated the experimental relaxation time data for supercooled

5



water down to -40 oC.

Under this hypothesis, from 1 MHz to 1 GHz the real dielectric constant of

ice is equal to its optical value (electronic polarisation) of ε∞i = 3.2 whereas

that of liquid water is still equal to its static value (orientation polarisation)

εs
` between 80 and 105 depending on the temperature, see figure 1 in (Fabbri

et al., 2005). To better show how these temperature dependent permittivities

can be useful in estimating the ice content inside a water-saturated material,

we now turn to describing the experimental procedure principle.

2.3 Experimental procedure principle

The important point is that the liquid content amount cannot be directly

measured by weighing under freezing and thawing conditions: if the material

is perfectly isolated, the total mass of water remains constant whereas the

mass fractions of ice and liquid vary as the phase change goes on. The only

measurable physical quantities are the temperature T (t) and the sample di-

electric constant
∗
ε(t) histories during freezing and thawing. It is not possible

to directly get the liquid water content S`(t) evolution with the temperature.

To do so, we have chosen to measure the sample dielectric constant ε̂ evolution

with the liquid water amount S` under drying at 20 oC. In this way the liquid

water mass varies through the liquid/vapour phase change occurring inside

the pores, which can be measured by weighing. This eventually allows to

identify an appropriate dielectric homogeneisation modelling (Zakri et al.,

1998; Cosenza et al., 2003; Fen-Chong et al., 2004; Bittelli et al., 2004) to

represent the role of each constituent permittivity and volume fraction on the
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host material permittivity:

ε̂ = H
(
εv, φv; ε`, φ`; εm, φm

)
(4)

where φq denotes the volume ratio of the q-constituent: q = v for the water

vapour phase, q = ` for the liquid water phase and q = m for the solid matrix.

The liquid content S` can be evaluated from the volume fractions φq, the latter

being measured by weighing. The function H allows to relate the measured

macroscopic permittivity ε̂ under drying condition with those (εq) acting at

the microscopic level. In (4) the microstructural information is implicitly taken

into account by the up-scaling model H.

If the microstructural configuration of the different constituents of the host

material is assumed to be identical in freezing/thawing and in drying tests,

then the same function H can be used to estimate the liquid content S` under

freezing/thawing condition from the measured
∗
ε(T ):

S` = H−1
(
εi; ε`; εm, φm;

∗
ε
)

(5)

in which εi substitutes for εv to distinguish ice/liquid from vapour/liquid phase

changes. Note that no mechanical effect is considered in equations (4) and (5)

since φm is assumed constant and each εq only depends on the temperature

and the frequency.
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3 Experiments

3.1 Materials

Fused glass beads are made from commercial Centraver (now CVp) soda-

lime (silica) glass powders which are between 62 to 87 µm in diameter. The

as-received materials are poured into a female mould which is then heated in

an oven at 630 oC. In this way the beads collapse and fuse together to yield a

cohesive porous medium as shown on the left hand-side of figure 1: the porous

network appears as the darker phase (from Scanning Electron Microscopy at

LCPC, Paris). Its apparent density is about 1.5 g/cm3, the mineral density

about 2.5 g/cm3, and its porosity φ0 is 0.40 ± 0.03. The right hand-side of

figure 1 shows the pore diameter distribution obtained from mercury injection

measurements. Initially it is mainly monodispersely centred around 30 µm

with precious few pores about 7 µm. After one freezing and thawing cycle,

this distribution almost remains unchanged. One can only note that the initial

7 µm-pores have merged into 10 µm-pores and that the proportion of 100 µm-

pores seems to have risen a little. However the inaccuracy associated with

mercury injection measurements does not allow to conclude that the porosity

has significantly changed.

Cylindrical samples of 50-mm mean diameter and 20-mm mean thickness were

used for the drying and freezing/thawing tests; their mean porous space vol-

ume is thus about 15.7 cm3 for a sample volume of 39.3 cm3. One of them was

drilled to insert a T-type thermocouple and to get the sample temperature

history for a given imposed temperature time-evolution.
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Fig. 1. Fused glass beads microstructure.

Each porous material sample is cleaned up from scraps, dried at 50 oC in

an oven for 3 days before weighing. It is then filled with degased home-made

distilled water at 3 kPa air pressure at approximately 20 oC. However some

residual air can be trapped in the sample such that the maximum initial degree

saturation can be as low as 0.95 (when comparing the weighed masses and the

calculated mass of water that could completely fill the porous space volume

obtained from porosimetry measurements). Different water degree saturations

are then achieved by using an oven at 50 oC. Then the sample is rapidly trans-

ferred into the capacitive electrodes, wrapped in a Parafilm sheet and tested.

Weighing is realised just before and after each capacitive test to evaluate the

water mass content and to check that no significant water loss happened.

3.2 Experimental equipment

Each sample is inserted between two plane and circular stainless steel elec-

trode plates of 60 mm diameter. All of them are connected to a 30 MHz-

50 MHz oscillator electronic device, which forms an oscillating electric circuit

at the resonant frequency ν̃, see figure 1 of (Fen-Chong et al., 2004) and fig-

ure 2 of (Fabbri et al., 2005). This device, designed and manufactured by the
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”Centre d’Études et de Construction de Prototypes” at Rouen (France), was

implementing a frequency divider (5632) in order to reach a low frequency

range (in the order of several kHz) before transmitting the signal to a digital

storage oscilloscope TDS1002 Tektronix (for signal-shape check) and to a

multifunction counter-timer 34907A Agilent. The experimental apparatus

delivers the reduced resonant frequency F = ν̃
5632

that depends on the actual

capacitance of the dielectric sample. In all that follows, the term ”frequency”

alone will be used.

The sample temperature is imposed by a Galden PFPE HT200 cryogenic fluid

(from Solvay Solexis) which circulates from a computer-controlled Hüber

cryostat. This fluid was chosen for its low static dielectric constant (about 2 at

20 oC) and because it does not disturb the frequency answer of the apparatus

during freezing and thawing. This problem was met with ethanol as formerly

used in (Fen-Chong et al., 2004) for isothermal tests at 20 oC.

As a preliminary stage, different commercial ceramic capacitors connected in

parallel to different commercial resistors were directly plugged to the oscillator

electronic device that was isolated from the other apparatus parts in this case.

This is done to check if the ionic conduction-induced dielectric loss (part of

the resistive term εr) of the non-ideal insulator porous materials does not

influence the frequency measures. This is found to be true for capacitance

values ranging from 1 to 47 pF, thus giving the capacitance operation range

of our oscillator device.
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3.3 Calibrations

Calibration tests were conducted to obtain the relation between F and the

sample capacitance C, as described in (Fabbri et al., 2005). The following

affine relationship was found:

C ' 113.6− 0.018 F. (6)

This calibration curve provides a means of converting F into the sample ca-

pacitance C and thus its real dielectric constant through (1), either under

drying condition (ε̂) or freezing/thawing condition (
∗
ε).

Drying tests were then conducted to obtain the relation between the liquid

water content and the frequency F . Liquid water content or amount is here

expressed as the liquid water saturation degree S` = φ`

φ0
(ratio of liquid volume

fraction over the sample initial porosity, which is also the ratio of the liquid-

filled volume over the initial porous space volume) and measured by weighing.

The as-obtained results are eventually turned into a ε̂(S`) calibration curve

through (1) and (6), which yields:

ε̂ ' 2.9 + 13.8 S` for fused glass beads. (7)

Affine-type ε̂(S`) relation was also found for cement paste, calcareous Caen

stones, and soils, as experimentally found or reported in (Fen-Chong et al.,

2004; Fabbri et al., 2005); it is also nearly the case for soils in (Eller and

Denoth, 1996).
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Fig. 2. Temperature independence of the frequency of the capacitive experimental

device. The fused glass beads sample may have contained little residual water, which

is of no significance as regards the frequency experimental uncertainty (±5 Hz).

3.4 So-obtained results in freezing/thawing

3.4.1 Temperature independence of the solid skeleton permittivity

First we ensured that, in the absence of liquid water in the volume comprised

between the stainless steel electrode plates, the experimental apparatus does

not provide a frequency F varying with the temperature. Figure 2 shows that

this condition is well fulfilled for an empty crystallizing dish.

Then the temperature dependence of the solid constituent permittivity εm of

fused glass beads was examined. Figure 2 shows that the frequency remains

nearly constant for a dried fused glass beads sample submitted to freezing

and thawing. The slight F variation probably comes from little residual wa-

ter, which nevertheless remains inside the frequency experimental uncertainty

domain (±5 Hz). The latter was determined by repeating the same test on the

same sample of each kind of several water-filled materials (fused glass beads,

calcareous Caen stone, crystallizing dish, sandstone, cement). In the end, it

can be concluded that εm is independent of the temperature.
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Fig. 3. Freezing and thawing fused glass beads: frequency time-variation. The onset

of freezing is about -5oC and the melting temperature is about 0oC.

It was also checked that wrapping a sample by the Parafilm sheet is dielec-

trically negligible and that the experimental apparatus behaviour is not influ-

enced by all nearby electric appliances.

3.4.2 Frequency evolution of frozen/thawed fused glass beads

Figure 3 shows the frequency time-evolution with that of the temperature for

the water-saturated fused glass beads sample. The temperature at which ice

formation begins is Ts ' −5 oC when both temperature and frequency starts

increasing: Ts is associated with the end of water supercooling. Shortly after,

the temperature remains constant at 0 ± 0.5 oC for ∆t ' 21 min while the

frequency goes on rising. The frequency gets stable at ∆t ' 30 min, which gives

the end of crystallization. Note that between ∆t ' 21 min and ∆t ' 30 min,

the temperature drops from ' −0.5 to ' −6 oC. On heating the in-pore ice

melting occurs when the temperature gets constant and equal to 0 ± 0.5 oC

while the frequency decreases slowly because of ice changing into liquid water.

Indeed the behaviour of the in-pore water of these fused glass beads is found
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to mimic that of bulk water contained in crystallizing dishes. Here the tem-

perature at which crystallization begins is about -6 oC nearly the same as

for fused glass beads. On the other hand, solidification is much slower than

for fused glass beads since here it lasts over t ' 1 h 1
4
. This comes from

the greater amount of water contained in a 47-ml Schott Duran crystallizing

dish than in our fused glass beads samples. The same kind of behaviour was

observed during freezing in water-filled pipes occurring at the end of water su-

percooling (Akyurt et al., 2002). We now turn to determining the ice content

time-evolution inside each sample.

4 Data analysis

4.1 Choice of a micro-macro dielectric model

An affine experimental ε̂(S`) curve was found for fused glass beads under

drying condition. To recover an expression like (7) for the whole range of S`

and φ0 values (between 0 and 1) while knowing the role of the microstructure

and of each constituent permittivity and volume fraction on the host material

permittivity, use can be made of the self-consistent scheme-based Lichtenecker

model (Zakri et al., 1998). The derivation of the Lichtenecker affine form is

given in (Fabbri et al., 2005) and, in particular, assumes that no particular

pore shape nor orientation is privileged with regard to the direction of the

external electric field, which is consistent with the microstructure shown in

figure 1. For the case at hand, it writes as:

ε = ε1−φ0
m

(
S` εφ0

` + (1− S`) εφ0

n`

)
(8)
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where εn` refers to a non-liquid form of water (ice or vapour). Since the water

vapour dielectric constant εv = 1 for temperatures ranging from 0 oC to

100 oC (Lide, 2001), for the drying tests (8) becomes (εn` ≡ εv):

ε̂ = ε1−φ0
m

(
(εφ0

` − 1) S` + 1
)

(9)

as a particular relation (4) for our porous materials. For fused glass beads,

comparison between (7) and (9) yields εm ' 5.9 and ε` ' 79.6 at 20 oC, which

agrees with the values found in another way (Fabbri et al., 2005).

4.2 Ice content estimation

Under freezing and thawing condition, (8) is inverted with εn` ≡ εi, such

that the relation (5), here expressed in terms of the ice saturation degree Si

(Si = 1− S`), takes the particular form of:

Si = 1−
( ∗

ε

ε1−φ0
m

− εφ0
i

)(
εφ0

` − εφ0
i

)−1

(10)

where
∗
ε(T ) is determined through (1), (6), and the frequency delivered by the

capacitive apparatus as the temperature T varies. Note that the derivation

of (10) requires to presume that both porous network and solid matrix volumes

remain constant.

With the determined values of the solid matrix permittivity (εm ' 5.9) and the

porosity (φ0 ' 0.40) of our porous material, the temperature and frequency

dependence of the liquid water permittivity (see section 2.2), the frequency

and temperature time-evolution during a freezing/thawing test (see figure 3),

the ice content can be straightforwardly predicted from (10), as shown in

figure 4. Note that the porosity is considered constant in this procedure: as
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Fig. 4. Freezing and thawing fused glass beads: time-evolution of ice content.

shown in the right hand-side of figure 1, the pore size distribution almost

remains unchanged after one freezing/thawing cycle.

Figure 4 shows the thermal and ice content time-evolution in fused glass beads

on freezing and thawing. It depicts the same ice/water phase change as dis-

cussed in section 3.4.2. It also shows the direct estimation of the ice saturation

degree without use of any up-scaling dielectric approach like the Lichtenecker

model. In such way, both drying and freezing/thawing tests simply provide the

dependence of the liquid water amount on the temperature by eliminating the

resonant frequency parameter from the F (S`) curve in drying and the F (T )

curve in freezing/thawing. Such data analysis surmises that both the slight

difference between the dielectric constants of air (1) and ice (3.2), as well as

the temperature and frequency dependence of the water dielectric constant,

are of no importance. This is not the case since the so-predicted ice content

varies before any crystallization occurs (0 ≤ t ≤ 1 h 1
2
), can go down as low

as -0.2 (well above the uncertainty error of -0.05), and underestimates the

highest ice content (0.87 instead of 0.99).
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Fig. 5. Freezing fused glass beads: analysis of the ice growth mechanisms.

4.3 Mechanism of ice formation in fused glass beads

The water-to-ice phase transition results from ice germs nucleation and from

the already stable ice crystals growth, both at the expense of the remaining

liquid water. One simple, though physically founded, way of describing this

in-pore ice formation relies on the Avrami law (Papon et al., 2002):

Si = 1− exp(−λ tn) (11)

where λ is a constant and n is the Avrami exponent that characterizes the

new phase growth mode. This law assumes a time-dependent nucleation rate

and takes account of the fact that the initially isolated ice crystals end up in

coalescing due to steric hindrance. The Avrami exponent can be identified if

the Si(t) curve can be recast in the following affine form: log(− ln(1− Si)) =

log λ + n log t. The left hand-side of figure 5 shows that the onset of crystal-

lization obeys to the Avrami law. The Avrami exponent n is fitted to be 0.49

for a freezing time less than 200 s:

Si = 1− exp(−0.052 t0.49). (12)
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The same procedure for Si ± 0.05 yields the miminum and maximum Avrami

exponents of 0.44 and 0.57.

Although the log(− ln(1 − Si))-log t curve is no more affine for freezing time

over 200 s, it is possible to assume that the Avrami law is still followed by

allowing the Avrami exponent to vary with time. Doing so, it is found that:

n(t ≥ 0) = 0.43 +
0.001

log t

(
exp(2 log t)− 1

)
(13)

where t is expressed in s. The time-evolution of n(t) during the freezing stage

is plotted in the right hand-side of figure 5. One can see that the Avrami

exponent remains between about 0.44 and 0.62 and thus in the order of 0.5.

Finally, from (12) and (13), the ice content curve can be expressed as:

Si(t) = 1− exp
(
−0.052 t(0.43+ 0.001

log t
(exp(2 log t)−1))

)
(14)

for the crystallization period (right hand-side of figure 4). The ice saturation

degree rate is found to be initially about 0.0044 s−1. Since Si is the ratio of the

current ice-filled volume over the initial porous space volume, for our given

material (see data in section 3.1) the initial ice volume growth time rate is

about 0.07 cm3/s. As can be seen on the right hand-side of figure 3, the ice

saturation degree rate is highest at the onset of freezing and then decreases

quickly down to 0. Hence it is reasonable to assume that each constituent of

the fused glass bead sample undergoes infinitesimal transformations as regards

all mechanical and thermodynamical phenomena.
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4.4 Discussion

In all cases, our Avrami exponent is close to 0.5 which corresponds to planar

ice crystals growths controlled by molecular diffusion from the liquid state to

the nucleating icy sites (Papon et al., 2002). This kind of ice formation is also

reported in (Akyurt et al., 2002) under the form of dendritic ice consisting of

thin plate-like crystals interspersed in liquid water during the first 30 seconds.

The fact that the ice/liquid water interface tends to be planar can be explained

as follows. First we recall that the pressure pi inside an ice crystal of mean

curvature κ∗ in mechanical equilibrium with neighbouring liquid water at the

pressure p` is governed by the Young-Laplace relation:

pcap = pi − p` = γ κ∗ (15)

where γ is the water/ice interface energy and pcap is the so-called capillary

pressure. Assuming that the ice/water phase change takes place as a non-

dissipative process and that temperature drops are not too large in order to

neglect the quadratic terms related to the water compressibility and to the

thermal expansion, the transition temperature T ∗ of this two-phase system is

approximated by (Coussy, 2005):

pcap = Sf (Tm − T ∗) (16)

where Sf is the entropy of fusion per unit of crystal volume. In (15) and (16),

the reference state is defined at atmospheric pressure (pi = p` = 0) and

T = Tm = 0 oC. From (15) and (16) the well-known Gibbs-Thomson equation

is recovered:

Tm − T ∗ =
γ κ∗

Sf

(17)
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As shown in figure 4, T ∗ ' Tm = 0 oC for ∆t ' 21 min: (17) implies that

κ∗ ' 0, which means that the ice/liquid water interface curvature tends to be

planar and thus supports our experimentally found Avrami exponent value in

the order of 0.5. From (16), this also indicates that ice and liquid water are

almost at the same pressure. The latter can be evaluated from the determined

ice content-versus-time function (14), which is going to be worked out.

5 Application: from ice content to pore pressure estimation

5.1 Closed pores

Consider a solid matrix embedding a water-filled porous volume of arbitrary

geometrical form. From t = 0, this system is submitted to freezing according

to (14). Its initial porosity is φ0 and its actual one is φ. We consider the whole

system to be at Tm = 0 oC during the whole crystallization process, such that

the liquid and ice pressures are imposed identical: the pore pressure remains

uniform within the closed pore in all the following.

In accordance with linear isotropic elasticity, the relative pore volume change

φ−φ0

φ0
is related to the pore pressure pmax, the ice content Si, and the pore bulk

modulus Kp by:

φ− φ0

φ0

=
(

ρ`0

ρi

− 1
)
Si − pmax

Kp

(18)

The first term of the right hand-side accounts for the relative pore volume

variation accompanying the mass density change when liquid water solidi-

fies freely (without any stress constraint), and the second one for the me-

chanical response of the surrounding matrix. In (18), the initial state is de-
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fined at atmospheric pressure (p = 0) and T = Tm. In this configuration,

ρ`0 = 0.9998 g/cm3 and ρi0 = 0.9167 g/cm3 are the liquid water and ice mass

densities (Petrenko and Whitworth, 1999), while the actual ice mass density

ρi can here be linearized as (Coussy, 2005):

ρi0

ρi

' 1− pi

Ki

(19)

where Ki is the ice bulk modulus and the temperature is assumed constant

(and thus equal to Tm). From (18) and (19) and recalling that pi = p`:

pmax(t) =

(
Kp(t)

(
ρ`0

ρi0
− 1

)
Si(t)−

(
φ−φ0

φ0

))

1 + Kp(t)
Ki

ρ`0

ρi0
Si(t)

. (20)

Because the ice-to-liquid ratio varies in the pore, its bulk modulus Kp evolves

with time. It is evaluated in (20) by presuming that the pore content can be

replaced by a fictitious homogeneous medium behaving globally in the same

way (Zaoui, 2002). Here use is made of the well-known Hashin-Shtrikmann

bounds. When the spatial distribution of each phase is isotropic, these bounds

are the optimized ones if only the volume fractions, the bulk moduli (Kq), and

shear moduli (Gq) of each phase (q) are known. In the case at hand,

K+
p = Ki +

(K` −Ki)(3Ki + 4Gi)

(3Ki + 4Gi) + 3(K` −Ki)Si

(1− Si) (21)

K−
p = K` +

(Ki −K`)(3K` + 4G`)

(3K` + 4G`) + 3(Ki −K`)(1− Si)
Si. (22)

According to (Kleinberg and Griffin, 2005), ice forms preferentially in the

center of the pores, leaving the unfrozen water in contact with the solid pore

wall. In this case, the stiffer phase (ice) is likely to be embedded in the softer

one (liquid water) such that the lower Hashin-Shtrikmann bound given by (22)

should provide an estimation of the pore bulk modulus.
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Fig. 6. Freezing fused glass beads: pore bulk modulus time-evolution (left); closed

pore pressure time-evolution (right).

The left hand-side of figure 6 shows the time-variation of Kp during the freezing

stage. Both bounds vary from the value of K` = 1.96 GPa (Speedy, 1987) to

almost Ki = 8.74 GPa (Petrenko and Whitworth, 1999). The latter is not

completely reached since Si < 1 experimentally. In (21) and (22), we also

put Gi = 3.46 GPa (Petrenko and Whitworth, 1999) and G` = 0. All liquid

and ice parameter values are taken at 0 oC. The resulting pressure pmax is

then found to increase quickly to more than 370 MPa at constant porosity

φ = φ0 = 0.40, as shown in the right hand-side of figure 6. Such value is

not surprising since (20) is derived for a closed pore but is clearly excessive

since no damage can be detected in the sample (see for instance the right

hand-side of figure 1). Even if the pore volume is allowed to vary, similar,

though lower, values are however obtained from the complete set of equations

of poroelasticity (Coussy, 2004).

One way of overcoming this difficulty consists in taking account of liquid

flow through the porous network. Indeed some residual air can be trapped

in the sample during the experimental saturation stage: the existence of such

compressible air is not meaningless since it can serve as interspersed escape
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boundaries for water flows during the crystallization stage.

5.2 Open porous network

We consider that the fused glass beads microstructure can be represented as

a set of big pores of radius R connected to each other through n smaller

cylindrical pores of radius r0 and length L. Liquid flow is allowed to occur

in these channel-like pores. On freezing the effective radius r through which

liquid water can still flow is given by:

r = r0

√
1− Si. (23)

Consider now the part of liquid water which was originally contained in the

pore before freezing onset and which has transformed into ice at time t. Let

ϕ = ρi

ρ`0
Si be its actual mass fraction over the initial liquid mass contained in

the pore. From (19), this quantity depends on both Si and pi: ϕ =
ρi0

ρ`0

Si

1− pi
Ki

.

Indeed, with the previous numerical values the term pi

Ki
≤ pmax

Ki
¿ 1, such that

ϕ can be recast in the following linear form:

ϕ ' ρi0

ρ`0

Si. (24)

We assume a Poiseuille flow in the channels that separate the pore from sur-

rounding pores remaining at zero liquid pressure. It can then be shown that the

liquid mass v flowing from a big pore (per unit of initial liquid mass contained

in the pore) is governed by (Coussy and Fen-Chong, 2005)





(
1 + γ(1− ϕ)

)
dv
dt

+ 1
τ
v = 1

η
pmax ϕ

v(t = 0) = 0

(25)

23



0 180 360 540 720 900 1080 1260

0.00

0.02

0.04

0.06

0.08

0.10

0.12
0 180 360 540 720 900 1080 1260

0.0

0.2

0.4

0.6

0.8

1.0

P
or

e 
pr

es
su

re
 w

ith
 li

qu
id

 fl
ow

 (M
P

a)

Elapsed time (s)

 Pressure: upper bound estimation
 Pressure: lower bound estimation

 Ice saturation degree

 Ic
e 

sa
tu

ra
tio

n 
de

gr
ee

0 1 2 3 4

0

50

100

150

200

250

300

350

400

450

500

550

600

In
ci

pi
en

t p
re

ss
ur

e 
w

ith
 li

qu
id

 fl
ow

 (P
a)

Elapsed time (s)

 Pore pressure: upper bound estimation
 Pore pressure: lower bound estimation

Fig. 7. Freezing fused glass beads: pore pressure when water is allowed to flow from

frozen sites to unfrozen ones (left); pore pressurization just after the onset of freezing

(right).

where γ =
1

K`
− 1

Ki
1

4
3 Gs

+ 1
Ki

, η = 8L V
n π r4 η`, τ = η

(
1

4
3
Gs

+ 1
Ki

)
, V = 4

3
πR3, η` the water

dynamic viscosity, and Gs the soda-lima silica glass shear modulus. The pore

pressure is eventually given by the Poiseuille equation (recall that p = pi = p`):

p = η
dv

dt
(26)

In the following we use the following values: η` = 1.79 × 10−3 Pa s, Gs =

30 GPa (Pilkington, 2005), r0 ' 1 µm, R ' 30 µm (see also the fused glass

beads microstructure of figure 1), n = 1, and L ' 1 cm .

From (14) and (20)-(26), figure 7 shows how the pore pressure evolves with

time during freezing. At the beginning of freezing, it quasi-instantaneously

increases up to ' 550 Pa before relaxing down to ' 250 Pa. From then, the

pressure increases again. At t = 21 min, the upper-bound pore pressure is

about only 0.1 MPa, which cannot damage the material (at least 19 MPa is

required (Pilkington, 2005)).

Note also that the Clapeyron equation for ice/water system (Lide, 2001; Papon
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et al., 2002):

P/MPa = −13.4(Tm − T ) + 0.1 (27)

provides that for a temperature equal to -0.5oC, the corresponding equilibrium

pressure is 6.7 MPa. This shows that our calculated pore pressure is largely

in the equilibrium pressure range induced by the experimental temperature

variations around 0oC.

6 Conclusion

In this paper we succeeded in determining the ice content time-evolution by use

of an oscillator circuit-based capacitive method. From this, we found that the

ice formation in fused glass beads follows the Avrami law at the 0oC-isothermal

transient freezing stage. The Avrami exponent is estimated to be in the or-

der of 0.5, which indicates that the ice/liquid interface tends to be planar so

that the liquid and ice pressures are almost equal. This is confirmed through

thermodynamical and mechanical considerations, i.e. the Gibbs-Thomson and

Young-Laplace equations. It is worthwhile to note that our results are different

from what is observed on cement pastes, soils, glass powder, or vycor (Brun

et al., 1977; Béjaoui et al., 2002; Watanabe and Mizogucchi, 2002; Bittelli

et al., 2004; Fabbri et al., 2005; Kleinberg and Griffin, 2005). In particular,

cementitious materials exhibit interconnected pores of different sizes ranging

from 1 nm to 1 mm (unlike our fused glass beads which are mainly monodis-

persely centred around 30 µm). In this case, progressive freezing temperature

depressions from -5 to -50 oC are commonly encountered, which is attributed

to the progressive ice propagation through narrower channel-like pores (inter-

connecting pores of bigger sizes) (Scherer, 1993): this whole process is then
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reasonably captured by an equilibrium relation like Gibbs-Thomson (17) and

involves curved ice/liquid interfaces. In our case, freezing occurs at the end

of in-pore water supercooling and as a transient phenomenon at the quasi-

constant temperature of 0 oC.

In addition, through an elementary poroelastic modelling, we made evident

that the pore pressure remains very low (less than 0.1 MPa) at the 0oC-

isothermal transient stage of solidification. Since this value is much lower than

the reported critical stress, the material is not damaged, which is experimen-

tally observed.

At last, a more refined analysis would require to take account of the sys-

tem actual complexity (temperature, ice content, permittivity gradients, heat

conduction and convection), which is to be tackled in future work.
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